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Abstract: In this study, we demonstrated for the first time that a metal-containing semicrystalline poly-
mer was used as an additive to mediate the thin film morphology of solution-grown, small-molecule
organic semiconductors. By mixing polyferrocenylsilane (PFS) with an extensively-studied organic
semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), PFS as a semicrystalline
polymer independently forms nucleation and crystallization while simultaneously ameliorating
diffusivity of the blend system and tuning the surface energies as a result of its partially amorphous
property. We discovered that the resultant blend film exhibited a 6-fold reduction in crystal mis-
orientation angle and a 3-fold enlargement in average grain width. Enhanced crystal orientation
considerably reduces mobility variation, while minimized defects and trap centers located at grain
boundaries lessen the adverse impact on the charge transport. Consequently, bottom-gate, top-
contact organic thin film transistors (OTFTs) based on the TIPS pentacene/PFS mixture yielded a 40%
increase in performance consistency (represented by the ratio of average mobility to the standard
deviation of mobility). The PFS semicrystalline polymer-controlled crystallization can be used to
regulate the thin film morphology of other high-performance organic semiconductors and shed light
on applications in organic electronic devices.

Keywords: small-molecule semiconductor; polyferrocenylsilane; thin film morphology; organic thin
film transistors; organic electronics

1. Introductions

Polymeric materials as additives have rapidly attracted considerable attention for ap-
plication in organic electronics [1–5]. When they are blended with organic semiconductors,
those polymers demonstrate various merits in controlling the crystal growth, enhancing
the semiconductor morphology, and improving the electrical performance of organic thin
film transistors (OTFTs) [6,7]. Research efforts in the semiconductor/polymer blend sys-
tems primarily focused on various amorphous polymers such as poly(α-methylstyrene)
(PαMS) [8,9], polymethyl methacrylate (PMMA) [10,11], and polystyrene (PS) [12,13]. For
instance, multiple groups studied the addition of PαMS into a p-type small-molecular
organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), and
observed the semiconductor vertically phase segregating with the polymer additive, which
enhanced charge transport of the TIPS pentacene based OTFTs [14]. Similarly, the PS
polymer was reported to blend with a high-performance organic semiconductor 2,7-dioctyl
[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), yielding vertical phase segregation
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and improved mobility [15–17]. In these studies, the vertical phase segregation between
the organic semiconductor and amorphous polymer additive can depend on a variety
of factors including solvent choice [18,19], surface energy [20–23], as well as polymer
molecular weight [24,25]. Consequently, the precise control of phase segregation and the
resultant compositional structure and thickness can be a technical challenge for many
organic electronic device applications.

More recently, amorphous polymers have been demonstrated along with miscella-
neous external alignment methods in order to fine-tune the alignment of bulk crystals
and optimize the charge transport of organic semiconductors. For example, Duan et al.
applied a solution shearing method to fabricate centimeter-sized C8-BTBT crystalline ar-
rays with excellent alignment and an ultra-thin thickness of several molecular layers [26].
Electrical characterization of 40 C8-BTBT/PS based OTFTs exhibited an average satura-
tion mobility 7-fold larger than the standard deviation, indicating improved performance
consistency. Onojima et al. developed an electrostatic spray deposition (ESD) method to
grow TIPS pentacene/PMMA blends on a flexible substrate [27]. The inclusion of an extra
PMMA buffer layer caused a phase-segregated interface with a molecular-level flatness
and enhanced charge transport properties of the organic semiconductor. Aikawa et al.
reported the growth of well-oriented TIPS-pentacene/polystylene blends with vertical
phase segregation by using a meniscus coating method [28]. At an optimized sweeping
speed of 0.75–2.0 mm/s and an elevated temperature, reduced interfacial trap density
and improved OTFT performance were both observed. Despite these advances, the com-
plexity of experimental setup and precise parameter control of these external alignment
methods may be rather challenging or even undesirable in all kinds of organic electronics
applications [29].

Polymers incorporating metallic units in their chains demonstrate functions derived
from both the polymers and their metallic elements, giving rise to different magnetic,
redox, optical, or catalytic properties [30]. These combined merits allow metal-containing
polymers to find applications in miscellaneous fields such as biosensors, electrolysis, and
electro-optical devices [31]. In this study, we demonstrated for the first time the utilization
of a metal-containing polymer-polyferrocenylsilane (PFS) semicrystalline polymer to con-
trol the crystal alignment, film morphology, and charge transport of solution-processed,
small-molecular organic semiconductors. TIPS pentacene was employed as an example
to blend with PFS because of its well-known solution processing and charge transport
properties. Metal-containing polymers or metallopolymers [32] provide unique metal-
involved intermolecular interactions that can result in novel electrical properties, which
have not been utilized previously in mediated organic crystal growth as far as we know.
Without the aid of external alignment techniques, we showed that the orientation of TIPS
pentacene bulk crystals can be facilely aligned along the tilted direction of the substrate. In
addition, the grain width, areal coverage, and crystal length of the TIPS pentacene were
quantitatively characterized. Bottom-gate, top-contact OTFTs were fabricated by using
the TIPS pentacene/PFS blends as an active layer, which demonstrates a 40% increase in
device electrical performance consistency.

2. Experiment

TIPS pentacene and semicrystalline polymer PFS were purchased from Sigma Aldrich
(St. Louis, MO, USA). Toluene was purchased from VWR (Radnor, PA, USA). All materials
were used as received. Both TIPS pentacene and PFS were dissolved in toluene separately.
The solute concentration was maintained at 5 mg/mL. Then the PFS solution was added
into the TIPS pentacene solution at a 5% volume ratio. A simple drop casting method was
used to grow the TIPS pentacene/PFS crystalline film under a “solvent rich configuration”.
In this configuration, the solvent mixture was deposited onto a substrate, which was
placed in a solvent-rich environment and covered with a cap. The substate was tilted at a
small angle (~5◦), which was intended to facilitate the crystals to align in this particular
orientation.
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The fabrication of bottom-gate, top-contact OTFTs was based on a silicon substrate
with a thermally grown silicon dioxide layer (250 nm) as dielectric. Gold (Au) was de-
posited via thermal evaporation as source and drain electrodes with a thickness of 50 nm,
as shown in the device configuration of Figure 1d. The thermal deposition of Au had an
evaporation rate of 1 Å/s under a pressure of 10−7 Torr. The channel dimensions were
defined by the shadow mask, which has a width of 2000 µm and different lengths of 25, 50,
75, and 100 µm. The optical images of TIPS pentacene/PFS blend crystals were taken by
using a polarized optical microscope. The electrical performance of TIPS pentacene/PFS
based OTFTs was characterized by using a Keithley 4200 semiconductor (Keithley Com-
pany, Cleveland, OH, USA) parameter analyzer. Measurement of each device was repeated
five times in order to ensure the consistency of results. All characterization took place at
room temperature in an ambient environment.
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Figure 1. (a) Molecular structure of various materials used in this work, including (a) polyferro-
cenylsilane polymer (PFS), (b) toluene, and (c) 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS
pentacene). (d) A schematic drawing showing two transistors with the TIPS pentacene crystals as
charge transport channel: one transistor has a crystal orientation parallel to the direction from the Au
source to drain electrodes, while the other has a crystal orientation perpendicular to this direction.
(e) Polarized microscopic picture of TIPS pentacene film without the PFS additive, which was grown
via simple drop casting in toluene solution. The pristine TIPS pentacene crystals exhibited dendritic
patterns of crystal growth and significant crystal misorientation. The crystal orientation or charge
transport direction of TIPS pentacene is shown by the arrows in (d,e). The bare substrate in (e) is
marked by the two white triangles.

3. Results and Discussion

The molecular structures of the PFS polymer and toluene are shown in Figure 1a,b,
respectively. The incorporation of iron substitution in the PFS polymer bestows unique
properties, including redox activity, semicrystallinity, and photoconductivity, which are not
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accessible by traditional organic polymers [33–36]. In addition, the precise control of chain
length in the metallopolymers also greatly expands its potential applications. Symmetrical
substitution often results in PFS polymer with a semicrystalline nature, whereas asym-
metrical substitution generally leads to PFS polymer with an amorphous nature [37]. As
compared to purely organic polymers, the presence of silicon and iron in the polymer main
chain enhances the stability of the PFS polymer, which allows it to be potentially applied in
plasma-assisted reactive ion etching as barrier material [38]. The high refractive index and
nonconductivity of the PFS polymer makes it promising for applications in light-emitting
diodes, antireflection coating [39], as well as satellite coating to prevent arc discharge [40].

The molecular structure of the small-molecular organic semiconductor TIPS pentacene
is shown in Figure 1c. As a derivative of pentacene, TIPS pentacene exhibits enhanced
charge transport due to its π–π stacking structure. The addition of the bulky side groups
interrupts the herringbone packing patterns and improves the solubility of TIPS pentacene
in organic solvents [41–44]. TIPS pentacene was employed as a benchmark material to
mix with PFS in this work due to its enhanced solubility and charge transport properties
as mentioned above. When drop casted in solution, TIPS pentacene exhibits a dendritic
growth pattern, as shown in the polarized optical image of Figure 1e. We use the arrows
to represent the long axis of the TIPS pentacene, which is also parallel to the charge
transport direction in the crystals [45]. The white triangles refer to the substrate without
TIPS pentacene coverage. It can be clearly seen that the crystal orientations are essentially
random, lacking order and alignment over a long range. With such misoriented crystals
as the charge transport channel, the mobility measured from the OTFTs can undergo
significant variations [46].

We employ the schematic plot in Figure 1d as an illustration to explain the interplay
among crystal orientation and mobility variation of the OTFTs. Figure 1d shows the device
configuration of two bottom-gate, top-contact OTFTs that share the same substrate. TIPS
pentacene (abbreviated as “TP”) crystals with different crystal orientations are incorporated
in the charge transport channel. In particular, one transistor device has crystal orientation
(presented by the arrows) parallel to the direction from source to drain contact electrodes,
whereas the other device has crystal orientation perpendicular to this direction. A previous
study employed an “anisotropic ratio” to examine the effect of crystal misorientation on the
extracted mobility of solution-processed TIPS pentacene thin films [47]. By systematically
changing the angle between the crystal long axis [210] and source-to-drain direction, an
anisotropic ratio of up to 10 was demonstrated, indicating that the extracted mobility
can exhibit a significant difference of up to 10-fold. The OTFTs as depicted in Figure 1d
can thereby undergo dramatic performance inconsistency, which restricts the potential
applications in organic electronics.

In order to regulate the dendritic growth pattern and mobility variation of TIPS pen-
tacene, we mixed it with the PFS semicrystalline polymer as an additive. The resultant
thin film morphologies of the TIPS pentacene/PFS blend crystals are presented in Figure 2.
The polarized optical images in Figure 2a–d were taken from different sections of the same
substrate. The arrows represent the long axis [210] or the charge transport direction of
TIPS pentacene crystals, while the white triangles indicate the bare substrate without TIPS
pentacene or PFS coverage. As observed under a polarized light microscope, TIPS pen-
tacene domains exhibit color variants induced by crystal orientations with a longitudinal
dimension extending to hundreds of microns [48]. On the other hand, as a semicrystalline
polymer, PFS forms crystals as a result of its own nucleation and crystallization, giving rise
to the formation of the relatively dark crystals shown in the optical images. The optical
micrographs only show the PFS domains that are large enough for optical images. Scan-
ning electron microscopy (SEM) and transmission electron microscopy (TEM) on nanoscale
polymer/organic semiconductor interfaces have many challenges including electron beam
induced sample damage and lack of contrast, which were not pursued in this work. This
result clearly indicates that the crystal orientations of TIPS pentacene are strictly aligned
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towards a more uniform direction (the same as the tilted direction of the substrate) due to
adding the PFS semicrystalline polymer.
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Figure 2. Polarized optical microscopic images showing the effect of the loading of the PFS polymer
on the thin film morphology of TIPS pentacene crystals. All images in (a–d) were taken from different
sections of the substrate, which showed that the PFS polymer minimized the dendritic pattern of TIPS
pentacene crystal growth. Instead, the TIPS pentacene/PFS crystals were aligned more uniformly
with larger grain width and coverage. The arrows in all four images indicate the crystal orientation.
The white triangles represent the surface without the TIPS pentacene/PFS film. All images share the
same scale bar as (a).

To more accurately characterize how the addition of the PFS polymer enhances the
thin film morphology of TIPS pentacene, we quantitatively calculated the following impor-
tant parameters of the blend film: the misorientation angle, grain width, crystal coverage,
and crystal length. As plotted in Figure 3a, the misorientation angle θ1 and θ2 is desig-
nated as the angle between the long axis [210] (represented by the arrows) of the TIPS
pentacene crystals. The calculation of misorientation angles was based on 18 measure-
ments for both pristine TIPS pentacene film and TIPS pentacene/PFS blend film. Since
the crystal long axis dictates the direction of charge transport, the misorientation angles
can adequately characterize the uniformity of charge carrier mobility as a result of adding
PFS as a semicrystalline polymer additive. The pristine TIPS pentacene film exhibits a
large misorientation angle of 40.1◦ ± 17.9◦, as depicted in Figure 3a. In comparison, the
TIPS pentacene/PFS blend film demonstrates a greatly reduced misorientation angle of
6.4◦ ± 3◦. The result clearly indicates that blending PFS as an additive yielded a 6-fold
reduction in the crystal misorientation, which confirms the observation of enhanced crystal
alignment in a long-range order as shown in the polarized optical images.

We continue to characterize the change of the TIPS pentacene crystal grain width as a
result of adding PFS as a semicrystalline polymer. As illustrated in the inset of Figure 3b,
the grain width refers to the crystal width measured along the crystal short axis [120].
Based on 18 measurements, the pristine TIPS pentacene film exhibits an average grain
width of 20.1 ± 10 µm, whereas the TIPS pentacene/PFS blend film shows an enlarged
grain width of 66.7 ± 21.9 µm. Evidently, the addition of the PFS semicrystalline polymer
results in a more than 3-fold increase of the grain width of TIPS pentacene crystals. It
is well known that the defects and charge trap centers can be mostly found at the grain
boundaries of the crystals [49–52], and thus, less populated grain boundaries as a result
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of enlarged grain width can essentially benefit the electrical performance of the small-
molecular semiconductor based transistor.
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Figure 3. The addition of the PFS polymer had a significant impact on the misorientation angle (θ), grain width (abbreviated
as WG), crystal coverage, and crystal length (abbreviated as LG) of the TIPS pentacene crystals. (a) θ1 and θ2 are the
misorientation angles, which were measured based on the angle between the charge transport direction (equivalent to the
long axis [210]) of one crystal and that of a baseline crystal. (b) WG is the grain width, equivalent to the crystal width along
the [120] short axis of TIPS pentacene. The average and standard deviation of both misorientation angle and grain width
are based on 18 measurements. (c) The crystal coverage refers to the ratio of the substrate that was covered by the TIPS
pentacene crystals. (d) The crystal length was measured along the same long axis [210] as indicated in (a). The average and
standard deviation of crystal length were based on 10 measurements.

In addition, the crystal coverage was calculated based on the percentage of the sub-
strate that was covered with the semiconductor crystalline film. As plotted in Figure 3c,
the pristine TIPS pentacene had a coverage of 63.2%, whereas the TIPS pentacene/PFS
blend film exhibits a higher coverage of 70.3%. Note that the crystal coverage was only
based on the crystalline TIPS pentacene, without including the dark PFS crystals. The
crystal length was measured along the long axis [210] of the TIPS pentacene crystals. As
shown in Figure 3d, the pristine TIPS pentacene showed an average crystal length of
337.4 ± 162.6 µm, while the addition of the PFS polymeric additive enlarged the crystal
length to 737.2 ± 182.7 µm, which is more than a 2-fold increase as compared to the pristine
film. Based on the morphological characterization as stated above, it can thus be inferred
that the PFS polymeric additive effectively attributed to the formation of long-stretching,
strictly-aligned TIPS pentacene crystals with improved film uniformity, larger grain width,
and higher substrate coverage.

We fabricated TIPS pentacene/PFS OTFTs based on a top-contact, bottom-gate con-
figuration. As compared to bottom-contact counterparts, the top-contact devices have
the merit of simplified fabrication, eliminating the complexity and high cost of contact
electrode patterning by using standard photolithography. The electrical characterization of
the TIPS pentacene/PFS devices, including both output and transfer curves, is presented
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in Figure 4a,b. The output curve was measured by sweeping the source-to-drain voltage
VDS from 0 to −60 V, while changing the gate voltage VGS from 20 to −60 V with a step
of -20 V. The transfer curve was measured by sweeping the VGS from 20 to −60 V, while
maintaining the VDS at −60 V. The output curve did not exhibit saturation behavior as the
VDS increased to −60 V, which can be presumably attributed to the incorporation of iron in
the PFS polymer chains. From the square root plot ( (−IDS)

1/2 ∼ VGS) in the transfer curve,
we calculated the hole mobility of TIPS pentacene/PFS blends based on the square-law
model of Equation (1):

IDS = µCi
W
2L

(VGS − VT)
2 (1)

In the equation stated above, µ represents the mobility to be extracted, IDS represents
the saturation drain current, VGS is the applied gate-source voltage, VT is the threshold
voltage, Ci is the gate dielectric capacitance (13.8 nF/cm2), and W and L are the shadow
mask width and length.
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The field-effect mobility of the TIPS pentacene/PFS blend based OTFTs is plotted in
a log scale in Figure 4c. The mobility of five different devices of the same substrate was
extracted as 3.2 × 10−3, 4.4 × 10−3, 6.7 × 10−3, 1.3 × 10−2, and 1.9 × 10−2 cm2/Vs, which
indicates that the mobility from all OTFTs only varies within one order of magnitude. In
contrast, the mobility of pristine TIPS pentacene OTFTs without adding the PFS polymeric
additive dramatically ranged between 9.8 × 10−5 and 8.4 × 10−2 cm2/Vs [53], showing mo-
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bility variations of 3 orders of magnitude. The average mobility of TIPS pentacene OTFTs
without and with adding the PFS semicrystalline polymer was 3 × 10−2 ± 3 × 10−2 [53]
and 9.33 × 10−3 ± 6.7 × 10−3 cm2/Vs, respectively, as shown in the plot of Figure 4d.
Furthermore, we employed the ratio of average mobility (µAVE) to standard deviation
(µSTDEV) of mobility as an effective measure to quantitatively evaluate the impact of mo-
bility variation on the performance consistency of OTFTs. The µAVE/µSTDEV ratio was
calculated to be 1 and 1.4 based on pristine TIPS pentacene film and TIPS pentacene/PFS
blend film as the active layer of OTFT devices, respectively. It can therefore be inferred that
the mixing of PFS semicrystalline polymer additive attributed to a 40% enhancement of
performance consistency of the TIPS pentacene OTFTs.

The mobility with the addition of PFS polymer was slightly lower than but still
comparable to the values for the pristine TIPS pentacene. It is important to emphasize
that the extracted mobility can depend on a few important factors. First, we intentionally
used a large channel dimension in this work (the channel width was 2000 µm, whereas the
channel length was up to 100 µm), whereas the pristine TIPS pentacene based OTFTs had a
much shorter channel width of 1000 µm. Such a large channel dimension in this work may
inevitably incorporate more crystalline defects and trap centers in the charge transport
channel, which reduces the mobility extracted from the TIPS pentacene/PFS blend film.
Second, the channel width and length used in Equation (1) for extracting mobility were
directly based on the dimension of the shadow mask, which can result in lower mobility
when the charge transport channel does not have a full coverage. This flatly contradicts
many previous studies that used the actual channel dimensions only with crystal coverage
for mobility calculation [54–56]. Third, no surfactant treatment was applied to the OTFT
device in this work. For example, a pentafluorobenzene thiol (PFBT) surfactant treatment
is typically employed on the contact electrodes to tune the work functions and to facilitate
charge injection [57]. The bottom-gate, top-contact configuration used in this work involves
the deposition of the organic semiconductor layer prior to the evaporation of contact
electrodes, which does not allow the utilization of PFBT treatment without damaging
the active layer. Hexamethyldisilazane (HMDS) treatment [58] can also be applied to the
substrate to passivate the hydrophilic silanol groups, which would otherwise serve as
charge trap centers and undermine the electrical performance of the TIPS pentacene/PFS
based OTFTs. Therefore, the mobility reported in this work can be significantly enhanced
by utilizing and optimizing these factors as mentioned above.

Finally, we use the plots in Figure 5 to illustrate the interplay among polymer addi-
tive, thin film morphology, and charge transport. The arrows in this figure represent the
long axis [210] or charge transport direction of TIPS pentacene. The titling rods indicate
the backbone orientation of TIPS pentacene. The pristine TIPS pentacene growth can be
predominantly characterized by a dendritic pattern, resulting in crystals with random
directions and low substrate coverage, as shown in Figure 5a. In contrast, the PFS semicrys-
talline polymer additive effectively enhances the TIPS pentacene thin film morphology by
reducing the crystal misorientation and enlarging the grain width. As a result, the TIPS
pentacene/PFS blend film exhibits straight alignment of crystals that extend in a long-range
order, as shown in Figure 5b. The mechanism of the PFS polymer additive modulating the
thin film morphology of TIPS pentacene can be explained by the following aspects. First,
similar to previously reported amorphous polymers such as PαMS, PS, and PMMA, the
partially amorphous property of PFS can exert a strong effect on ameliorating diffusivity of
the blend system and tuning the surface energies. Second, the hydrophobic nature of the
PFS polymer core [59] is likely to induce intermolecular interactions with the hydrophobic
alkyl side groups of TIPS pentacene, which promotes uniform deposition of nucleation
seeds and enhances homogeneous crystallization of the organic semiconductor [43]. The
ferrocene of PFS core can also have steric and electromagnetic effects that are not available
in other polymer additives in guiding the TIPS pentacene crystallization. Third, as a
semicrystalline polymer, PFS independently forms nucleation and crystallization. These
effects synergistically attribute to the enhanced crystal alignment, improved film coverage,
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and enlarged crystal size of TIPS pentacene. Unlike conjugated polymers, which promote
π–π interactions and cocrystallization with the organic semiconductor [60–62], the PFS
eliminates such complicated processes, which can be otherwise undesirable for many facile
processes. Furthermore, in Table 1, we summarize miscellaneous properties of PFS [63–65]
and compare them with those of PS. These important properties include the density, glass
transition temperature, crystallization behavior, Mark–Houwink parameter and potential
applications. Therefore, the employment of the PFS additive allows a synergistic combi-
nation of the respective advantages from both semiconducting polymers and amorphous
polymers, which can give rise to broader applications in various fields.
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Figure 5. Schematic plots depict (a) the dendritic pattern of TIPS pentacene crystal growth, showing
random orientation, small grain width, and low substrate coverage; (b) TIPS pentacene/PFS film
showing elimination of the TIPS pentacene dendritic growth pattern, remarkable crystal alignment,
enlarged grain width, and enhanced coverage of the mixed film on the substrate. The semicrystalline
PFS can nucleate and crystallize independently of the crystallization events of TIPS pentacene. The
tilted rods indicate how the TIPS pentacene backbones are oriented. The arrows indicate the long
axis [210] orientation of TIPS pentacene.

Table 1. Miscellaneous properties of PFS and PS [63–65].

Property PFS PS

Density 1.3 g/cm3 1.05 g/cm3

Glass Transition Temperature 33 ◦C 100 ◦C

Crystallization Behavior

Spherulitic crystal growth;
single crystal: trans-planar

zigzag with parallel packing;
films and fibers: monoclinic
crystalline polymer phase
along with a hexagonal or

tetragonal mesophase

Amorphous film

Mark–Houwink Parameter
0.62 (in THF), random coils of
PFS much denser in THF than

those of PS
0.72 (in THF)

Applications Magnetic nanostructures
Pharmaceutical, medical,
horticulture, appliance

packaging, etc.



Polymers 2021, 13, 402 10 of 13

4. Conclusions

In summary, we report the employment of a semicrystalline polymer PFS to alleviate
random orientation, improve crystal alignment, and enlarge grain width of the small-
molecular organic semiconductor TIPS pentacene. Blending PFS as an additive yielded a
6-fold reduction in the crystal misorientation angle to 6.4◦ ± 3◦ and was simultaneously
attributed to a 3-fold enhancement of the grain width to 66.7 ± 21.9 µm. Consequently, TIPS
pentacene crystals were strictly aligned towards a uniform orientation and stretched in a
long-range order across the substrate. Such morphological enhancement was attributed to
the amelioration of the blend system diffusivity and the modification of surface energies due
to the partially amorphous property of PFS. Bottom-gate, top-contact TIPS pentacene/PFS
based OTFTs demonstrated a mobility of up to 1.9 × 10−2 cm2/Vs and a remarkable
40% enhancement in performance consistency (denoted by the ratio of average mobility
to the standard deviation of mobility). We believe PFS would also exert similar effects
on modulating the thin film morphology and charge transport of other small-molecular
organic semiconductors. Future efforts can be dedicated to studying the possible phase
segregation between TIPS pentacene and PFS, which will shed light on their application in
organic electronics devices on flexible substrates.
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